Nassau County Interscholastic Mathematics League

Contest #4 Answers must be integers from 0 to 999, inclusive. 2024 - 2025

Calculators are allowed.

- 19. Kevin has a 20-ounce drink of coffee and milk that is 60% coffee. He adds milk until his drink is only 40% coffee. Compute the number of ounces of milk that Kevin added to his drink.
- 20. Compute the radius of the circle with the following equation: $x^2 + y^2 + 14x - 12y + 60 = 0.$

Nassau County Interscholastic Mathematics League

Contest #4 Answers must be integers from 0 to 999, inclusive. 2024 – 2025

Calculators are allowed.

Time, to minutes name.	Time: 10 minutes	Name:
------------------------	------------------	-------

21. In trapezoid WXYZ, sides \overline{WX} and \overline{ZY} are parallel, WZ = ZY, and WY = WX. If $m \not AWXY = 70^\circ$, compute the number of degrees in $m \not AWZY$.

22. Compute the sum of the positive integer values of x such that $x^2 + 75$ is a perfect square.

Nassau County Interscholastic Mathematics League

Contest #4 Answers must be integers from 0 to 999, inclusive.

2024 - 2025

Calculators are allowed.

Time: 10 minutes

Name:			

23. If
$$\sqrt{1+\sqrt{1+\sqrt{x}}}=2$$
, compute x .

24. In $\triangle ABC$, AB=12, $BC=4\sqrt{13}$, and AC=8. The angle bisector from point A intersects side \overline{BC} at Q and the median from point C intersects side \overline{AB} at P. The intersection of the angle bisector and the median is R. Let PR be the fraction $\frac{a}{b}$, in simplest terms. Compute ab.

Solutions for Contest #4

- 19. If Kevin adds *x* ounces of milk, then $\frac{12}{20+x} = \frac{2}{5} \to 60 = 40 + 2x \to x = 10$.
- 20. Rearrange the given equation: $x^2 + 14x + y^2 12y = -60 \rightarrow x^2 + 14x + 49 + y^2 12y + 36 = -60 + 49 + 36 = 25 \rightarrow (x+7)^2 + (y-6)^2 = 5^2$. So, the radius of the circle is **5**.
- 21. Since ΔWXY is isosceles, $m \not \Delta WYX = 70^{\circ}$ and $m \not \Delta YWX = 40^{\circ}$. Since \overline{WX} and \overline{ZY} are parallel, $m \not \Delta ZYW = 40^{\circ}$ and because ΔZWY is isosceles, $m \not \Delta ZWY = 40^{\circ}$. Thus, $m \not \Delta WZY = 100^{\circ}$.
- 22. If one positive integer that meets the condition of the problem is y, then $y^2 = x^2 + 75 \rightarrow y^2 x^2 = 75 \rightarrow (y+x)(y-x) = 75$. This can be separated into several pairs of equations: y+x=75, $y-x=1 \rightarrow (x,y)=(37,38)$; y+x=25, $y-x=3 \rightarrow (x,y)=(11,14)$; y+x=15, $y-x=5 \rightarrow (x,y)=(5,10)$. The sum of the x values is 37+11+5=53.

23.
$$\sqrt{1 + \sqrt{1 + \sqrt{x}}} = 2 \to 1 + \sqrt{1 + \sqrt{x}} = 4 \to \sqrt{1 + \sqrt{x}} = 3 \to 1 + \sqrt{x} = 9 \to \sqrt{x} = 8 \to x = 64.$$

24. Since $12^2 + 8^2 = \left(4\sqrt{13}\right)^2$ the given triangle is a right triangle with hypotenuse *BC*. The median divides *AB* into 2 equal parts so AP = 6. Apply the Pythagorean theorem in right $\triangle APC$ to find that PC = 10. Use the angle bisector theorem to find PR: $\frac{PA}{AC} = \frac{6}{8} = \frac{3}{4}$ so PR is $\frac{3}{7}$ of PC and RC is $\frac{4}{7}$ of PC. It follows that $\frac{a}{b} = \frac{30}{7}$ so $ab = 30 \times 7 = 210$.

