Nassau County Interscholastic Mathematics League
 Contest \#1 Answers must be integers from 0 to 999, inclusive. 2019-2020
 No calculators are allowed.

Time: 10 minutes
Name: \qquad

1) The quadratic function, $f(x)=a x^{2}+b x+c$ satisfies $f(0)=3$,

$$
f\left(\frac{1}{2}\right)=0, \text { and } f(2)=21 . \text { Compute } a .
$$

2) Compute: $2021-\left(\frac{1}{2020}+\frac{2021 \cdot 2019}{2020}\right)$.
1.

2.

Nassau County Interscholastic Mathematics League		
Contest \#1 \quad Answers must be integers from 0 to 999, inclusive. $2019-2020$		
No calculators are allowed.		

Time: 10 minutes
Name: \qquad
3) Assume all coders write code at the same rate. If 6 coders can write 8 programs in 3 days, compute the number of coders that will be required to write 20 programs in 15 days.
4) In right $\triangle X Y Z, \Varangle Z$ is a right angle, $X Z=30$, and $Y Z=30 \sqrt{3}$. Points A, B, and C are chosen so that $\overline{X A Z}, \overline{Y B Z}$, and $\overline{X C Y}, \overline{A B} \| \overline{X Y}$, and $\triangle A B C$ is equilateral. Compute $A B$.
3.

Nassau County Interscholastic Mathematics League		
Contest \#1 \quad Answers must be integers from 0 to 999, inclusive. $2019-2020$		
No calculators are allowed.		

Time: 10 minutes
Name: \qquad
5) In Ms. Fermat's mathematics class, 25 students took a test. If the arithmetic mean of the passing grades was 84 , and the arithmetic mean of the failing grades was 59 , and the arithmetic mean of all the grades was 80 , compute the number of students who passed the test.
6) If the only positive real solution of $\sqrt[3]{x+5}-\sqrt[3]{x}=1$ is written in simplest $\frac{a+b \sqrt{c}}{d}$ form, compute $a+b+c+d$.
5.

6.

Solutions for Contest \#1

1) From the first function value, $c=3$. From the second function value, $\frac{a}{4}+\frac{b}{2}+3=0$. From the third function value, $4 a+2 b+3=21$. Solve the latter two equations simultaneously to yield $b=-11$ and $a=\mathbf{1 0}$.
2) $2021-\left(\frac{1}{2020}+\frac{2021 \cdot 2019}{2020}\right)=\frac{2021 \cdot 2020-1-2021 \cdot 2019}{2020}=\frac{2021(2020-2019)-1}{2020}=\frac{2021 \cdot 1-1}{2020}$ $=\frac{2020}{2020}=1 . \quad$ Note: This problem is an application of the identity $(a \neq 0):$
$a+1-\left(\frac{1}{a}+\frac{(a+1)(a-1)}{a}\right)=a+1-\left(\frac{1}{a}+\frac{a^{2}-1}{a}\right)=a+1-\frac{a^{2}}{a}=a+1-a=1$.
3) Let x coders $=\frac{20 \text { programs }}{15 \text { days }}$. It is given that 6 coders $=\frac{8 \text { programs }}{3 \text { days }}$. Divide these two equations to yield $\frac{x}{6}=\frac{20}{15} \div \frac{8}{3}=\frac{60}{120}=\frac{1}{2}$. Thus, $x=3$.
4) Since $X Z=30$ and $Z Y=30 \sqrt{3}$ are the legs of a right triangle, $\triangle X Y Z$ is a 30-60-90 triangle. Since $\triangle A B Z \sim \triangle X Y Z, \triangle A B Z$ is also a 30-60-90 triangle. Since $\triangle A B C$ is equilateral, $\triangle A X C$ is also equilateral. Let $a=A B=A C=A X$. So, $A Z=\frac{1}{2} a$ and $a+\frac{1}{2} a=30$. Thus, $a=20$.

5) If x students passed the test, then $84 x+59(25-x)=80 \cdot 25 \rightarrow$ $25 x+1475=2000 \rightarrow x=21$.
6) The given equation yields $\sqrt[3]{x+5}=1+\sqrt[3]{x} \rightarrow x+5=1+3 \sqrt[3]{x}+3(\sqrt[3]{x})^{2}+x$ $\rightarrow 3(\sqrt[3]{x})^{2}+3 \sqrt[3]{x}-4=0 \rightarrow \sqrt[3]{x}=\frac{-3 \pm \sqrt{57}}{6}$. Only the positive answer is required, so $6 \sqrt[3]{x}=\sqrt{57}-3 \rightarrow 216 x=57 \sqrt{57}-3(57)(3)+3(\sqrt{57})(9)-27 \rightarrow$ $216 x=-540+84 \sqrt{57} \rightarrow x=\frac{-540+84 \sqrt{57}}{216}=\frac{-45+7 \sqrt{57}}{18}$. The required sum is 37 .
