Nassau County Interscholastic Mathematics League

Contest #3 Answers must be integers from 0 to 999, inclusive. 2014 – 2015 No calculators are allowed.

Time: 10 minutes

- 1) What two-digit number is exactly twice the sum of its digits?
- 2) Sides \overline{AB} and \overline{CD} of regular hexagon ABCDEF are extended to meet in point *G*. If AB = 2 and $EG = a\sqrt{b}$, where \sqrt{b} is in simplest form, compute a + b.

Time: 10 minutes

- 3) If Isaac walks to school and returns by bus, the entire trip takes 90 minutes. If he takes the bus both ways it takes him 30 minutes. Isaac walks at a constant rate and the bus rides at a constant rate. How many minutes will it take Isaac to walk both ways?
- 4) In a circle, parallel chords with lengths of 8 and 12 inches are 10 inches apart. The center of the circle is between the chords. If the radius of the circle is \sqrt{k} , compute k.

Time: 10 minutes

- 5) For how many pairs (*x*, *y*) of positive integers does $x^2 y^2 = 315$?
- 6) If x > 0 and y > 0 and $x^2 + y^2 = 98xy$, then $\log(x + y)$ can be expressed as $A \log x + B \log y + C$, where *A*, *B*, and *C* are real numbers, and all logarithms are base-ten logarithms. Compute 100*ABC*.

Solutions for Contest #3

- 1) If *t* is the tens digit and *u* is the ones digit, then $10t + u = 2(t + u) \rightarrow u = 8t$. The maximum possible value for *t* is 1. Therefore, u = 8 and the required number is **18**.
- 2) Extend \overline{ED} through point *D* and drop a perpendicular from point *G* to meet \overline{ED} at point *H*. Now, $m \measuredangle CBG = m \measuredangle BCG = m \measuredangle BGC = m \measuredangle HDG = 60^\circ$. So, $\triangle BGC$ is equilateral and GC = 2, making GD = 4, and in 30°-60°-90° $\triangle GDH$, $GH = 2\sqrt{3}$. Now, in right $\triangle GEH$, $(EG)^2 = (GH)^2 + (HE)^2 = (2\sqrt{3})^2 + 4^2 = 28$. So, $EG = 2\sqrt{7}$ and the required sum is **9**. Alternate solution: Draw \overline{EG} , and use the Law of Cosines in $\triangle EDG$: $(EG)^2 = (ED)^2 + (DG)^2 2(ED)(DG) \cos 120^\circ = 2^2 + 4^2 2 \cdot 2 \cdot 4 \cdot (-1/2) = 28 \rightarrow EG = 2\sqrt{7}$, so the required sum is **9**.
- 3) Let

d be the distance from home to school, r_w be Isaac's walking rate, and r_b be the bus' rate. In minutes, $\frac{d}{r_w} + \frac{d}{r_b} = 90$ and $\frac{2d}{r_b} = 30 \rightarrow \frac{d}{r_b} = 15 \rightarrow \frac{d}{r_w} = 75 \rightarrow \frac{2d}{r_w} = 150$ minutes.

<u>Alternate solution</u>: If a two-way bus trip takes 30 minutes, a one-way trip must take 15 minutes. Thus Isaac takes 90 - 15 = 75 minutes to walk to school one way, so a two-way trip would take 150 minutes.

- 4) Without loss of generality, name the shorter chord \overline{AB} and the longer chord \overline{CD} in circle *O*. Draw radii \overline{OA} and \overline{OC} , each with length *r*. Drop perpendiculars from point *O* to point *M* in chord \overline{CD} and to point *N* in chord \overline{AB} . Let OM = x and ON = 10 - x. In the right triangles, we have $16 + (10 - x)^2 = r^2$ and $36 + x^2 = r^2$. Solving simultaneously yields x = 4 and $r^2 = 52$. The required answer is **52**.
- 5) When factored in pairs, 315 = 1 ⋅ 315 = 3 ⋅ 105 = 5 ⋅ 63 = 7 ⋅ 45 = 9 ⋅ 35 = 15 ⋅ 21 If, for example, x y = 1 and x + y = 315, then (x, y) = (158,157). Proceeding in a similar manner with the other products, (x, y) = (54, 51), (34, 29), (26,19), (22,13), or (18,3). There are 6 such ordered pairs.
- 6) Complete the square on the left side of the original equation and re-write as the square of a binomial: $(x + y)^2 = 100xy \rightarrow 2\log(x + y) = 2 + \log x + \log y \rightarrow \log(x + y) = 1 + \frac{1}{2}\log x + \frac{1}{2}\log y$. So, $100ABC = 100 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{2} = 25$