1. If $x \%$ of x is 2.25 , and $x>0$, find x.
2. Find the sum of the three smallest composite numbers that have no prime factor less than 10 .
3. The product of n distinct integers is 18 . Find the maximum value of n.
4. Points A and D are on opposite sides of $\overline{B C}, \overline{A B} \perp \overleftarrow{B C}$, and $\overline{C D} \perp \overleftarrow{B C}, \mathrm{AB}=9$, $B C=21$, and $C D=11$. Find $A D$.
5. One of the roots of $x^{2}+B x+C=0$, where B and C are integers, is $\sqrt{2}+1$. Find $|B+C|$.
6. In triangle $A B C, A B=5, B C=6$, and $A C=7$. Point O is outside the triangle and in the interior of angle A. A circle with center O is tangent to side $\overline{B C}$ at Q, and to sides $\overline{A B}$ and $\overline{A C}$ extended at P and R, respectively. Find $B Q$.
7. The polynomial $P(x)$ has degree 3 and leading coefficient 1 . If $P(1)=1, P(2)=2$, and $P(3)=3$, find $P(4)$.
8. In $\Delta, \mathrm{AB}=13, \mathrm{BC}=14$, and $\mathrm{AC}=15$. The angle bisector of \Varangle meets in point D. A perpendicular line from vertex A meets in point H. Find the product of the lengths of and
9. Let m be the second smallest positive integer x for which $\tan \left(\log _{10} 50 x\right)^{0}=\tan \left(\log _{10} 50\right)^{0}$. Find the number of digits of m.
10. In triangle $A B C, A B=5, B C=7$, and $C A=6$. Point P is inside the triangle, and the distances from P to $\overline{A B}$ and $\overline{A C}$, are respectively 2 and 3. The distance from P to $\overline{B C}$ can be expressed as $\frac{a \sqrt{b}-c}{d}$, where a, b, c and d are positive integers, b is not divisible by the square of any prime, and a and d are relatively prime. Find $a+b+c+d$.
11. The given condition is equivalent to $(x / 100) x=2.25$. Multiply both sides by 100 to obtain $x^{2}=225$. Thus $\mathrm{x}=15$.
12. The smallest primes after 10 are 11,13 and 17. The candidates for the three requested composites are $11^{2}=121,11 \cdot 13=143,11 \cdot 17=187$, and $13^{2}=169$. The requested sum is $121+143+169=433$.
13. Notice that $18=-1 \cdot 1 \cdot 2 \cdot 3 \cdot-3$, so $n=5$.
14. Extend $\overline{A B}$ through B. Let E be the projection of D onto $\overline{A B}$ extended. In right triangle $A E D, A D^{2}=A E^{2}+D E^{2}=20^{2}+21^{2}=841$, so $A D=29$.
15. Let $x=\sqrt{2}+1$. Then $x-1=\sqrt{2}$, so $(x-1)^{2}=2$. Thus $x^{2}-2 x+1=2$, and so $x^{2}-2 x-1=0$. Therefore $(B, C)=(-2,-1)$, so $|\mathrm{B}+\mathrm{C}|=3$.
16. Let $B P=B Q=\mathrm{x}$, and let $C Q=C R=y$. Then $x+5=A P=A R=y+7$, and $6=B C=B Q+Q C=x+y$. Solve to obtain $B Q=x=4$.
17. Notice that 1,2 , and 3 are roots of $P(x)-x=0$. Thus $P(x)-x=(x-1)(x-2)(x-3)$, so $P(4)-4=3 \cdot 2 \cdot 1=6$, and $P(4)=10$.
18. It is a nice fact that the altitude to the 14 side in a $13,14,15$ triangle has length 12. (Use either the Pythagorean theorem or Heron's formula to verify.) So, $\mathrm{AH}=12, \mathrm{BH}=5$, and $\mathrm{CH}=9$. (Notice the Pythagorean triples.) Using the angle bisector theorem (An angle bisector of a triangle divides the side that it intersects into the ratio of the lengths of the other two sides of the triangle.): $\mathrm{BD}=13 \mathrm{k}$ and $\mathrm{DC}=15 \mathrm{k}$ for some positive integer $\mathrm{k} .13 \mathrm{k}+15 \mathrm{k}=14$. So, $\mathrm{k}=0.5$ and $\mathrm{BD}=6.5$. $\mathrm{DH}=6.5-5=1.5$. The required product is 18 .
19. The given equation is equivalent to $\tan (\log 50+\log x)^{0}=\tan (\log 50)^{0}$ and is satisfied if and only if $\log =180$, where k is an integer. If $k=0, x=1$ and if k $=1, \mathrm{x}=10180$. Thus $\log m=180$, so $m=10^{180}$, which has 181 digits.
20. The sum of the areas of triangles $A P B, B P C$, and $C P A$ equals the area of triangle $A B C$. Use Heron's Formula to find that the area of triangle $A B C$ is $6 \sqrt{6}$. Let x be the distance from P to $\overline{B C}$. Then $(1 / 2) \cdot 5 \cdot 2+(1 / 2) \cdot 6 \cdot 3+(1 / 2) \cdot 7 x=6 \sqrt{6}$. Solve to obtain $x=\frac{12 \sqrt{6}-28}{7}$. Then $a+b+c+d=53$.
