	Nassau County Interscholastic Mathematics League	
Contest #2	Answers must be integers from 0 to 999 inclusive.	2010 - 2011
	Calculators are allowed.	

Time: 10 minutes

- 1. Find the product of the real solutions of $x^{2010} = 1$.
- 2. In a cube whose edges have length $10\sqrt{6}$, *ABCD* and *EFGH* are opposite faces. Find the distance from *A* to the center of *EFGH*.

Time: 10 minutes

- 3. Find the least positive integer n such that 1040n is a square.
- 4. The lengths of the medians of a triangle are 9, 9, and 12. The area of the triangle can be expressed as $p\sqrt{q}$, where p and q are positive integers and q is not divisible by the square of a prime. Find p + q.

Time: 10 minutes

- 5. The coordinates of point *A* are (12, 77) and the coordinates of point *B* are (68, -53). Point *P* is on \overline{AB} so that AP:PB = 3:7. The coordinates of *P* are (m, n). Find 10(m + n).
- 6. Find the coefficient of x^5 in the expansion of $(1 + x + x^2)^5$.

Solutions for Contest #2

- 1. The two real solutions are 1 and -1, and their product is -1.
- 2. Let *O* be the center of *EFGH*. Without loss of generality, let *ABFE* be a face of the cube, and let *P* be the midpoint of \overline{EF} . Draw \overline{OP} and \overline{PA} . Then $PA^2 = PE^2 + EA^2 = (10\sqrt{6})^2 + (5\sqrt{6})^2 = 750$, and so $AO^2 = AP^2 + PO^2 = 750 + (5\sqrt{6})^2 = 900$. Thus AO = 30.
- 3. Notice that $1040 = 2^4 \cdot 5 \cdot 13$. The least possible value of *n* is therefore $5 \cdot 13 = 65$.
- 4. Label the triangle ABC, let K be its area, let \overline{AD} and \overline{BE} be the medians of length 9, and let \overline{CF} be the median (and altitude) of length 12. Let G be the centroid of the triangle (the point of intersection of the medians). Because the medians of a triangle divide each other in the ratio 2:1, AG = 6 and GF = 4. Use the Pythagorean Theorem to conclude that $AF = 2\sqrt{5}$. Then the area of right triangle AFG is $(1/2)2\sqrt{5} \cdot 4 = 4\sqrt{5}$, and so $K = 6 \cdot 4\sqrt{5} = 24\sqrt{5}$. Thus p + q = 29.
- 5. Each of the coordinates of P is the weighted average of the corresponding coordinates of A and B. In particular, the coordinates of P are $\left(\frac{7 \cdot 12 + 3 \cdot 68}{10}, \frac{7 \cdot 77 + 3 \cdot -53}{10}\right) = (28.8, 38).$ Thus 10(m + n) = 668.
- 6. The given product contains five factors of $(x^2 + x + 1)$. To expand the product, you must choose one term from 1, x and x^2 in each of the five factors. If you choose a 1's, b x's and $c x^2$'s, then a + b + c = 5. In order for the product of the terms to be x^5 , you must have $1^a \cdot x^b \cdot (x^2)^c = x^5$, that is, b + 2c = 5. Thus a = c, and so you must choose either no 1's, five x's and no x^2 's; one 1, three x's and one x^2 ; or two 1's, one x and two x^2 's.

Count the three cases separately. In the first case, there is one way to choose no 1's, five x's and no x^2 's. In the second case, there are 5 ways to choose a 1, then 4 ways to choose an x^2 for a total of 20 ways to choose one 1, three x's and one x^2 . In the third case, there are 5 ways to choose one x, then $\binom{4}{2} = 6$ ways to choose two 1's for a total of 30 ways to choose two 1's, one x and two x^2 's. Thus the coefficient of x^5 is 1 + 20 + 30 = 51.

Alternatively, we can count as follows:

Case I: choosing one x from each of the five trinomial factors, only one way Case II: Choosing three x's, one 2, and one 1 is analogous to counting the number of arrangements of the letters in the word GEESE. 5!/(1!3!1!)Case III: Choosing two 2, one x and two 1's is analogous to counting the number of arrangements of the letters in the word MAMAS. 5!/(2!1!2!)