Nassau County Interscholastic Mathematics League ## Solutions, Contest 3 #13. | Possible | 115 | 214 | 223 | 313 | 403 | 502 | 601 | 700 | Total | |----------|-----|-----|-----|-----|-----|-----|-----|-----|-------| | Digits | | | | | - | | | | | | N | 3 | 6 | 3 | 3 | 4 | 4 | 4 | 1 | 28 | N = # of acceptable permutations #14. The number of diagonals of a polygon is given by $$_{n}C_{2}-n=\frac{n(n-1)}{2}-n=\frac{n(n-3)}{2}$$. So, $\frac{360}{n}=\frac{n(n-3)}{2}+1$; $n^{3}-3n^{2}+2n=720$; $(n-2)(n-1)n=720$. Since n is an integer, the factors suggest three consecutive integers with a product of 720. By inspection, they are 8, 9, and 10. Alternately, one can construct a table and observe the pattern. | | # of diagonals | measure of an exterior angle | | |--|----------------|--|--| | equilateral triangle | 0 | 120 | | | square | 2 | 90 | | | regular pentagon | 5 | 72 | | | regular hexagon | 9 | 60 | | | regular heptagon | 14 | 360/7 | | | regular octagon | 20 | 45 | | | regular nonagon | 27 | 40 | | | regular decagon | 35 | 36 (35 + 1) | | | 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | AND THE PROPERTY OF PROPER | | #15. A side of the square measures $5\sqrt{2}$ and a diagonal measures 10. The area of right \triangle BFE is 100 and the area of right \triangle BCD is 25. The area of trapezoid CDEF is the difference between these two areas, 75. #16. Let x = number of pounds of water lost. Initially, the watermelon contained 36 lbs of water. $\frac{36-x}{45-x} = \frac{3}{5}$; x = 22.5; The new weight of the watermelon, in pounds, is (45 - 22.5) or 22.5, of which (36 - 22.5) or 13.5 lbs is water. 13.5 is 60% of 22.5. #17. Mary reads 27 pages in 36 minutes. Beth reads 57 pages in 75 minutes. 27:36 = 3:4 and 57:75 = 19:25. If Mary reads 3 pages every 4 minutes, then she will take 456 minutes to read 342 pages. If Beth reads 19 pages every 25 minutes, then it will take her 450 minutes to complete the book, a difference of 6 minutes. #18. For the front of the train to enter the tunnel and the rear of the train to exit the tunnel, the train must travel a total of (500 + 17,100) or 17,600 feet. $$\frac{40 \text{ miles}}{1 \text{ hour}} \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} \cdot \frac{5280 \text{ ft}}{1 \text{ mile}} = 3,520 \text{ ft per min. and } 17,600 \div 3,520 = 5.$$